Towards Real Scene Super-Resolution with Raw Images (1905.12156v1)
Abstract: Most existing super-resolution methods do not perform well in real scenarios due to lack of realistic training data and information loss of the model input. To solve the first problem, we propose a new pipeline to generate realistic training data by simulating the imaging process of digital cameras. And to remedy the information loss of the input, we develop a dual convolutional neural network to exploit the originally captured radiance information in raw images. In addition, we propose to learn a spatially-variant color transformation which helps more effective color corrections. Extensive experiments demonstrate that super-resolution with raw data helps recover fine details and clear structures, and more importantly, the proposed network and data generation pipeline achieve superior results for single image super-resolution in real scenarios.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.