Papers
Topics
Authors
Recent
2000 character limit reached

Towards Real Scene Super-Resolution with Raw Images (1905.12156v1)

Published 29 May 2019 in eess.IV and cs.CV

Abstract: Most existing super-resolution methods do not perform well in real scenarios due to lack of realistic training data and information loss of the model input. To solve the first problem, we propose a new pipeline to generate realistic training data by simulating the imaging process of digital cameras. And to remedy the information loss of the input, we develop a dual convolutional neural network to exploit the originally captured radiance information in raw images. In addition, we propose to learn a spatially-variant color transformation which helps more effective color corrections. Extensive experiments demonstrate that super-resolution with raw data helps recover fine details and clear structures, and more importantly, the proposed network and data generation pipeline achieve superior results for single image super-resolution in real scenarios.

Citations (103)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.