Papers
Topics
Authors
Recent
2000 character limit reached

Learning Portable Representations for High-Level Planning (1905.12006v1)

Published 28 May 2019 in cs.LG, cs.AI, and stat.ML

Abstract: We present a framework for autonomously learning a portable representation that describes a collection of low-level continuous environments. We show that these abstract representations can be learned in a task-independent egocentric space specific to the agent that, when grounded with problem-specific information, are provably sufficient for planning. We demonstrate transfer in two different domains, where an agent learns a portable, task-independent symbolic vocabulary, as well as rules expressed in that vocabulary, and then learns to instantiate those rules on a per-task basis. This reduces the number of samples required to learn a representation of a new task.

Citations (39)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.