Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Paper Matching with Local Fairness Constraints (1905.11924v1)

Published 28 May 2019 in cs.DS and cs.DL

Abstract: Automatically matching reviewers to papers is a crucial step of the peer review process for venues receiving thousands of submissions. Unfortunately, common paper matching algorithms often construct matchings suffering from two critical problems: (1) the group of reviewers assigned to a paper do not collectively possess sufficient expertise, and (2) reviewer workloads are highly skewed. In this paper, we propose a novel local fairness formulation of paper matching that directly addresses both of these issues. Since optimizing our formulation is not always tractable, we introduce two new algorithms, FairIR and FairFlow, for computing fair matchings that approximately optimize the new formulation. FairIR solves a relaxation of the local fairness formulation and then employs a rounding technique to construct a valid matching that provably maximizes the objective and only compromises on fairness with respect to reviewer loads and papers by a small constant. In contrast, FairFlow is not provably guaranteed to produce fair matchings, however it can be 2x as efficient as FairIR and an order of magnitude faster than matching algorithms that directly optimize for fairness. Empirically, we demonstrate that both FairIR and FairFlow improve fairness over standard matching algorithms on real conference data. Moreover, in comparison to state-of-the-art matching algorithms that optimize for fairness only, FairIR achieves higher objective scores, FairFlow achieves competitive fairness, and both are capable of more evenly allocating reviewers.

Citations (70)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.