Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Combining Compositional Models and Deep Networks For Robust Object Classification under Occlusion (1905.11826v4)

Published 28 May 2019 in cs.CV

Abstract: Deep convolutional neural networks (DCNNs) are powerful models that yield impressive results at object classification. However, recent work has shown that they do not generalize well to partially occluded objects and to mask attacks. In contrast to DCNNs, compositional models are robust to partial occlusion, however, they are not as discriminative as deep models. In this work, we combine DCNNs and compositional object models to retain the best of both approaches: a discriminative model that is robust to partial occlusion and mask attacks. Our model is learned in two steps. First, a standard DCNN is trained for image classification. Subsequently, we cluster the DCNN features into dictionaries. We show that the dictionary components resemble object part detectors and learn the spatial distribution of parts for each object class. We propose mixtures of compositional models to account for large changes in the spatial activation patterns (e.g. due to changes in the 3D pose of an object). At runtime, an image is first classified by the DCNN in a feedforward manner. The prediction uncertainty is used to detect partially occluded objects, which in turn are classified by the compositional model. Our experimental results demonstrate that combining compositional models and DCNNs resolves a fundamental problem of current deep learning approaches to computer vision: The combined model recognizes occluded objects, even when it has not been exposed to occluded objects during training, while at the same time maintaining high discriminative performance for non-occluded objects.

Citations (58)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.