Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Cost Efficient Approach to Correct OCR Errors in Large Document Collections (1905.11739v1)

Published 28 May 2019 in cs.CV

Abstract: Word error rate of an ocr is often higher than its character error rate. This is especially true when ocrs are designed by recognizing characters. High word accuracies are critical to tasks like the creation of content in digital libraries and text-to-speech applications. In order to detect and correct the misrecognised words, it is common for an ocr module to employ a post-processor to further improve the word accuracy. However, conventional approaches to post-processing like looking up a dictionary or using a statistical LLM (slm), are still limited. In many such scenarios, it is often required to remove the outstanding errors manually. We observe that the traditional post-processing schemes look at error words sequentially since ocrs process documents one at a time. We propose a cost-efficient model to address the error words in batches rather than correcting them individually. We exploit the fact that a collection of documents, unlike a single document, has a structure leading to repetition of words. Such words, if efficiently grouped together and corrected as a whole can lead to a significant reduction in the cost. Correction can be fully automatic or with a human in the loop. Towards this, we employ a novel clustering scheme to obtain fairly homogeneous clusters. We compare the performance of our model with various baseline approaches including the case where all the errors are removed by a human. We demonstrate the efficacy of our solution empirically by reporting more than 70% reduction in the human effort with near perfect error correction. We validate our method on Books from multiple languages.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.