Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Computational Aspects of Equilibria in Discrete Preference Games (1905.11680v1)

Published 28 May 2019 in cs.GT

Abstract: We study the complexity of equilibrium computation in discrete preference games. These games were introduced by Chierichetti, Kleinberg, and Oren (EC '13, JCSS '18) to model decision-making by agents in a social network that choose a strategy from a finite, discrete set, balancing between their intrinsic preferences for the strategies and their desire to choose a strategy that is `similar' to their neighbours. There are thus two components: a social network with the agents as vertices, and a metric space of strategies. These games are potential games, and hence pure Nash equilibria exist. Since their introduction, a number of papers have studied various aspects of this model, including the social cost at equilibria, and arrival at a consensus. We show that in general, equilibrium computation in discrete preference games is PLS-complete, even in the simple case where each agent has a constant number of neighbours. If the edges in the social network are weighted, then the problem is PLS-complete even if each agent has a constant number of neighbours, the metric space has constant size, and every pair of strategies is at distance 1 or 2. Further, if the social network is directed, modelling asymmetric influence, an equilibrium may not even exist. On the positive side, we show that if the metric space is a tree metric, or is the product of path metrics, then the equilibrium can be computed in polynomial time.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.