Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Shared Linear Quadratic Regulation Control: A Reinforcement Learning Approach (1905.11524v2)

Published 27 May 2019 in cs.SY

Abstract: We propose controller synthesis for state regulation problems in which a human operator shares control with an autonomy system, running in parallel. The autonomy system continuously improves over human action, with minimal intervention, and can take over full-control. It additively combines user input with an adaptive optimal corrective signal. It is adaptive in that it neither estimates nor requires a model of the human's action policy, or the internal dynamics of the plant, and can adjust to changes in both. Our contribution is twofold; first, a new synthesis for shared control which we formulate as an adaptive optimal control problem for continuous-time linear systems and solve it online as a human-in-the-loop reinforcement learning. The result is an architecture that we call shared linear quadratic regulator (sLQR). Second, we provide new analysis of reinforcement learning for continuous-time linear systems in two parts. In the first analysis part, we avoid learning along a single state-space trajectory which we show leads to data collinearity under certain conditions. We make a clear separation between exploitation of learned policies and exploration of the state-space, and propose an exploration scheme that requires switching to new state-space trajectories rather than injecting noise continuously while learning. This avoidance of continuous noise injection minimizes interference with human action, and avoids bias in the convergence to the stabilizing solution of the underlying algebraic Riccati equation. We show that exploring a minimum number of pairwise distinct state-space trajectories is necessary to avoid collinearity in the learning data. In the second analysis part, we show conditions under which existence and uniqueness of solutions can be established for off-policy reinforcement learning in continuous-time linear systems; namely, prior knowledge of the input matrix.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.