Papers
Topics
Authors
Recent
2000 character limit reached

MINA: Multilevel Knowledge-Guided Attention for Modeling Electrocardiography Signals

Published 27 May 2019 in eess.SP and cs.LG | (1905.11333v3)

Abstract: Electrocardiography (ECG) signals are commonly used to diagnose various cardiac abnormalities. Recently, deep learning models showed initial success on modeling ECG data, however they are mostly black-box, thus lack interpretability needed for clinical usage. In this work, we propose MultIlevel kNowledge-guided Attention networks (MINA) that predict heart diseases from ECG signals with intuitive explanation aligned with medical knowledge. By extracting multilevel (beat-, rhythm- and frequency-level) domain knowledge features separately, MINA combines the medical knowledge and ECG data via a multilevel attention model, making the learned models highly interpretable. Our experiments showed MINA achieved PR-AUC 0.9436 (outperforming the best baseline by 5.51%) in real world ECG dataset. Finally, MINA also demonstrated robust performance and strong interpretability against signal distortion and noise contamination.

Citations (62)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.