Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Kernel Conditional Density Operators (1905.11255v2)

Published 27 May 2019 in cs.LG, math.ST, stat.ML, and stat.TH

Abstract: We introduce a novel conditional density estimation model termed the conditional density operator (CDO). It naturally captures multivariate, multimodal output densities and shows performance that is competitive with recent neural conditional density models and Gaussian processes. The proposed model is based on a novel approach to the reconstruction of probability densities from their kernel mean embeddings by drawing connections to estimation of Radon-Nikodym derivatives in the reproducing kernel Hilbert space (RKHS). We prove finite sample bounds for the estimation error in a standard density reconstruction scenario, independent of problem dimensionality. Interestingly, when a kernel is used that is also a probability density, the CDO allows us to both evaluate and sample the output density efficiently. We demonstrate the versatility and performance of the proposed model on both synthetic and real-world data.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.