Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Computer-aided Detection of Squamous Carcinoma of the Cervix in Whole Slide Images (1905.10959v1)

Published 27 May 2019 in cs.CV and eess.IV

Abstract: Goal: Squamous cell carcinoma of cervix is one of the most prevalent cancer worldwide in females. Traditionally, the most indispensable diagnosis of cervix squamous carcinoma is histopathological assessment which is achieved under microscope by pathologist. However, human evaluation of pathology slide is highly depending on the experience of pathologist, thus big inter- and intra-observer variability exists. Digital pathology, in combination with deep learning provides an opportunity to improve the objectivity and efficiency of histopathologic slide analysis. Methods: In this study, we obtained 800 haematoxylin and eosin stained slides from 300 patients suffered from cervix squamous carcinoma. Based on information from morphological heterogeneity in the tumor and its adjacent area, we established deep learning models using popular convolution neural network architectures (inception-v3, InceptionResnet-v2 and Resnet50). Then random forest was introduced to feature extractions and slide-based classification. Results: The overall performance of our proposed models on slide-based tumor discrimination were outstanding with an AUC scores > 0.94. While, location identifications of lesions in whole slide images were mediocre (FROC scores > 0.52) duo to the extreme complexity of tumor tissues. Conclusion: For the first time, our analysis workflow highlighted a quantitative visual-based slide analysis of cervix squamous carcinoma. Significance: This study demonstrates a pathway to assist pathologist and accelerate the diagnosis of patients by utilizing new computational approaches.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.