Papers
Topics
Authors
Recent
2000 character limit reached

Robust Classification using Robust Feature Augmentation (1905.10904v3)

Published 26 May 2019 in cs.LG and stat.ML

Abstract: Existing deep neural networks, say for image classification, have been shown to be vulnerable to adversarial images that can cause a DNN misclassification, without any perceptible change to an image. In this work, we propose shock absorbing robust features such as binarization, e.g., rounding, and group extraction, e.g., color or shape, to augment the classification pipeline, resulting in more robust classifiers. Experimentally, we show that augmenting ML models with these techniques leads to improved overall robustness on adversarial inputs as well as significant improvements in training time. On the MNIST dataset, we achieved 14x speedup in training time to obtain 90% adversarial accuracy com-pared to the state-of-the-art adversarial training method of Madry et al., as well as retained higher adversarial accuracy over a broader range of attacks. We also find robustness improvements on traffic sign classification using robust feature augmentation. Finally, we give theoretical insights for why one can expect robust feature augmentation to reduce adversarial input space

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.