Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Sparse Monte Carlo method for nonlocal diffusion problems (1905.10844v2)

Published 26 May 2019 in math.NA, cs.NA, and nlin.AO

Abstract: A class of evolution equations with nonlocal diffusion is considered in this work. These are integro-differential equations arising as models of propagation phenomena in continuum media with nonlocal interactions including neural tissue, porous media flow, peridynamics, models with fractional diffusion, as well as continuum limits of interacting dynamical systems. The principal challenge of numerical integration of nonlocal systems stems from the lack of spatial regularity of the data and solutions intrinsic to nonlocal models. To overcome this problem we propose a semidiscrete numerical scheme based on the combination of sparse Monte Carlo and discontinuous Galerkin methods. An important feature of our method is sparsity. Sparse sampling of points in the Monte Carlo approximation of the nonlocal term allows to use fewer discretization points without compromising the accuracy. We prove convergence of the numerical method and estimate the rate of convergence. There are two principal ingredients in the error of the numerical method related to the use of Monte Calro and Galerkin approximations respectively. We analyze both errors. Two representative examples of discontinuous kernels are presented. The first example features a kernel with a singularity, while the kernel in the second example experiences jump discontinuity. We show how the information about the singularity in the former case and the geometry of the discontinuity set in the latter translate into the rate of convergence of the numerical procedure. In addition, we illustrate the rate of convergence estimate with a numerical example of an initial value problem, for which an explicit analytic solution is available. Numerical results are consistent with analytical estimates.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.