Emergent Mind

Abstract

We consider training over-parameterized two-layer neural networks with Rectified Linear Unit (ReLU) using gradient descent (GD) method. Inspired by a recent line of work, we study the evolutions of network prediction errors across GD iterations, which can be neatly described in a matrix form. When the network is sufficiently over-parameterized, these matrices individually approximate {\em an} integral operator which is determined by the feature vector distribution $\rho$ only. Consequently, GD method can be viewed as {\em approximately} applying the powers of this integral operator on the underlying/target function $f*$ that generates the responses/labels. We show that if $f*$ admits a low-rank approximation with respect to the eigenspaces of this integral operator, then the empirical risk decreases to this low-rank approximation error at a linear rate which is determined by $f*$ and $\rho$ only, i.e., the rate is independent of the sample size $n$. Furthermore, if $f*$ has zero low-rank approximation error, then, as long as the width of the neural network is $\Omega(n\log n)$, the empirical risk decreases to $\Theta(1/\sqrt{n})$. To the best of our knowledge, this is the first result showing the sufficiency of nearly-linear network over-parameterization. We provide an application of our general results to the setting where $\rho$ is the uniform distribution on the spheres and $f*$ is a polynomial. Throughout this paper, we consider the scenario where the input dimension $d$ is fixed.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.