Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Regularity as Regularization: Smooth and Strongly Convex Brenier Potentials in Optimal Transport (1905.10812v5)

Published 26 May 2019 in stat.ML and cs.LG

Abstract: Estimating Wasserstein distances between two high-dimensional densities suffers from the curse of dimensionality: one needs an exponential (wrt dimension) number of samples to ensure that the distance between two empirical measures is comparable to the distance between the original densities. Therefore, optimal transport (OT) can only be used in machine learning if it is substantially regularized. On the other hand, one of the greatest achievements of the OT literature in recent years lies in regularity theory: Caffarelli showed that the OT map between two well behaved measures is Lipschitz, or equivalently when considering 2-Wasserstein distances, that Brenier convex potentials (whose gradient yields an optimal map) are smooth. We propose in this work to draw inspiration from this theory and use regularity as a regularization tool. We give algorithms operating on two discrete measures that can recover nearly optimal transport maps with small distortion, or equivalently, nearly optimal Brenier potentials that are strongly convex and smooth. The problem boils down to solving alternatively a convex QCQP and a discrete OT problem, granting access to the values and gradients of the Brenier potential not only on sampled points, but also out of sample at the cost of solving a simpler QCQP for each evaluation. We propose algorithms to estimate and evaluate transport maps with desired regularity properties, benchmark their statistical performance, apply them to domain adaptation and visualize their action on a color transfer task.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.