Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Usage of multiple RTL features for Earthquake prediction (1905.10805v1)

Published 26 May 2019 in stat.AP, cs.LG, eess.SP, and physics.data-an

Abstract: We construct a classification model that predicts if an earthquake with the magnitude above a threshold will take place at a given location in a time range 30-180 days from a given moment of time. A common approach is to use expert forecasts based on features like Region-Time-Length (RTL) characteristics. The proposed approach uses machine learning on top of multiple RTL features to take into account effects at various scales and to improve prediction accuracy. For historical data about Japan earthquakes 1992-2005 and predictions at locations given in this database the best model has precision up to ~ 0.95 and recall up to ~ 0.98.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube