Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Usage of multiple RTL features for Earthquake prediction (1905.10805v1)

Published 26 May 2019 in stat.AP, cs.LG, eess.SP, and physics.data-an

Abstract: We construct a classification model that predicts if an earthquake with the magnitude above a threshold will take place at a given location in a time range 30-180 days from a given moment of time. A common approach is to use expert forecasts based on features like Region-Time-Length (RTL) characteristics. The proposed approach uses machine learning on top of multiple RTL features to take into account effects at various scales and to improve prediction accuracy. For historical data about Japan earthquakes 1992-2005 and predictions at locations given in this database the best model has precision up to ~ 0.95 and recall up to ~ 0.98.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.