Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

ViterbiNet: A Deep Learning Based Viterbi Algorithm for Symbol Detection (1905.10750v2)

Published 26 May 2019 in cs.LG, eess.SP, and stat.ML

Abstract: Symbol detection plays an important role in the implementation of digital receivers. In this work, we propose ViterbiNet, which is a data-driven symbol detector that does not require channel state information (CSI). ViterbiNet is obtained by integrating deep neural networks (DNNs) into the Viterbi algorithm. We identify the specific parts of the Viterbi algorithm that are channel-model-based, and design a DNN to implement only those computations, leaving the rest of the algorithm structure intact. We then propose a meta-learning based approach to train ViterbiNet online based on recent decisions, allowing the receiver to track dynamic channel conditions without requiring new training samples for every coherence block. Our numerical evaluations demonstrate that the performance of ViterbiNet, which is ignorant of the CSI, approaches that of the CSI-based Viterbi algorithm, and is capable of tracking time-varying channels without needing instantaneous CSI or additional training data. Moreover, unlike conventional Viterbi detection, ViterbiNet is robust to CSI uncertainty, and it can be reliably implemented in complex channel models with constrained computational burden. More broadly, our results demonstrate the conceptual benefit of designing communication systems to that integrate DNNs into established algorithms.

Citations (133)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.