Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

DAVE: A Deep Audio-Visual Embedding for Dynamic Saliency Prediction (1905.10693v2)

Published 25 May 2019 in cs.CV

Abstract: This paper studies audio-visual deep saliency prediction. It introduces a conceptually simple and effective Deep Audio-Visual Embedding for dynamic saliency prediction dubbed DAVE" in conjunction with our efforts towards building an Audio-Visual Eye-tracking corpus namedAVE". Despite existing a strong relation between auditory and visual cues for guiding gaze during perception, video saliency models only consider visual cues and neglect the auditory information that is ubiquitous in dynamic scenes. Here, we investigate the applicability of audio cues in conjunction with visual ones in predicting saliency maps using deep neural networks. To this end, the proposed model is intentionally designed to be simple. Two baseline models are developed on the same architecture which consists of an encoder-decoder. The encoder projects the input into a feature space followed by a decoder that infers saliency. We conduct an extensive analysis on different modalities and various aspects of multi-model dynamic saliency prediction. Our results suggest that (1) audio is a strong contributing cue for saliency prediction, (2) salient visible sound-source is the natural cause of the superiority of our Audio-Visual model, (3) richer feature representations for the input space leads to more powerful predictions even in absence of more sophisticated saliency decoders, and (4) Audio-Visual model improves over 53.54\% of the frames predicted by the best Visual model (our baseline). Our endeavour demonstrates that audio is an important cue that boosts dynamic video saliency prediction and helps models to approach human performance. The code is available at https://github.com/hrtavakoli/DAVE

Citations (42)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub