Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Counting Homomorphisms Modulo a Prime Number (1905.10682v1)

Published 25 May 2019 in cs.CC

Abstract: Counting problems in general and counting graph homomorphisms in particular have numerous applications in combinatorics, computer science, statistical physics, and elsewhere. One of the most well studied problems in this area is #GraphHom(H) --- the problem of finding the number of homomorphisms from a given graph G to the graph H. Not only the complexity of this basic problem is known, but also of its many variants for digraphs, more general relational structures, graphs with weights, and others. In this paper we consider a modification of #GraphHom(H), the #_p GraphHom(H) problem, p a prime number: Given a graph G, find the number of homomorphisms from G to H modulo p. In a series of papers Faben and Jerrum, and Goebel et al. determined the complexity of #_2 GraphHom(H) in the case H (or, in fact, a certain graph derived from H) is square-free, that is, does not contain a 4-cycle. Also, Goebel et al. found the complexity of #_p GraphHom(H) for an arbitrary prime p when H is a tree. Here we extend the above result to show that the #_p GraphHom(H) problem is #_p P-hard whenever the derived graph associated with H is square-free and is not a star, which completely classifies the complexity of #_p GraphHom(H) for square-free graphs H.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.