Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Constellation Loss: Improving the efficiency of deep metric learning loss functions for optimal embedding (1905.10675v1)

Published 25 May 2019 in cs.LG and cs.CV

Abstract: Metric learning has become an attractive field for research on the latest years. Loss functions like contrastive loss, triplet loss or multi-class N-pair loss have made possible generating models capable of tackling complex scenarios with the presence of many classes and scarcity on the number of images per class not only work to build classifiers, but to many other applications where measuring similarity is the key. Deep Neural Networks trained via metric learning also offer the possibility to solve few-shot learning problems. Currently used state of the art loss functions such as triplet and contrastive loss functions, still suffer from slow convergence due to the selection of effective training samples that has been partially solved by the multi-class N-pair loss by simultaneously adding additional samples from the different classes. In this work, we extend triplet and multiclass-N-pair loss function by proposing the constellation loss metric where the distances among all class combinations are simultaneously learned. We have compared our constellation loss for visual class embedding showing that our loss function over-performs the other methods by obtaining more compact clusters while achieving better classification results.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.