Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Learning and Composing Primitive Skills for Dual-arm Manipulation (1905.10578v1)

Published 25 May 2019 in cs.RO

Abstract: In an attempt to confer robots with complex manipulation capabilities, dual-arm anthropomorphic systems have become an important research topic in the robotics community. Most approaches in the literature rely upon a great understanding of the dynamics underlying the system's behaviour and yet offer limited autonomous generalisation capabilities. To address these limitations, this work proposes a modelisation for dual-arm manipulators based on dynamic movement primitives laying in two orthogonal spaces. The modularity and learning capabilities of this model are leveraged to formulate a novel end-to-end learning-based framework which (i) learns a library of primitive skills from human demonstrations, and (ii) composes such knowledge simultaneously and sequentially to confront novel scenarios. The feasibility of the proposal is evaluated by teaching the iCub humanoid the basic skills to succeed on simulated dual-arm pick-and-place tasks. The results suggest the learning and generalisation capabilities of the proposed framework extend to autonomously conduct undemonstrated dual-arm manipulation tasks.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.