Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fully Hyperbolic Convolutional Neural Networks (1905.10484v3)

Published 24 May 2019 in cs.CV and cs.LG

Abstract: Convolutional Neural Networks (CNN) have recently seen tremendous success in various computer vision tasks. However, their application to problems with high dimensional input and output, such as high-resolution image and video segmentation or 3D medical imaging, has been limited by various factors. Primarily, in the training stage, it is necessary to store network activations for back propagation. In these settings, the memory requirements associated with storing activations can exceed what is feasible with current hardware, especially for problems in 3D. Motivated by the propagation of signals over physical networks, that are governed by the hyperbolic Telegraph equation, in this work we introduce a fully conservative hyperbolic network for problems with high dimensional input and output. We introduce a coarsening operation that allows completely reversible CNNs by using a learnable Discrete Wavelet Transform and its inverse to both coarsen and interpolate the network state and change the number of channels. We show that fully reversible networks are able to achieve results comparable to the state of the art in 4D time-lapse hyper spectral image segmentation and full 3D video segmentation, with a much lower memory footprint that is a constant independent of the network depth. We also extend the use of such networks to Variational Auto Encoders with high resolution input and output.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.