Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Learning Low-Rank Approximation for CNNs (1905.10145v1)

Published 24 May 2019 in cs.LG and stat.ML

Abstract: Low-rank approximation is an effective model compression technique to not only reduce parameter storage requirements, but to also reduce computations. For convolutional neural networks (CNNs), however, well-known low-rank approximation methods, such as Tucker or CP decomposition, result in degraded model accuracy because decomposed layers hinder training convergence. In this paper, we propose a new training technique that finds a flat minimum in the view of low-rank approximation without a decomposed structure during training. By preserving the original model structure, 2-dimensional low-rank approximation demanding lowering (such as im2col) is available in our proposed scheme. We show that CNN models can be compressed by low-rank approximation with much higher compression ratio than conventional training methods while maintaining or even enhancing model accuracy. We also discuss various 2-dimensional low-rank approximation techniques for CNNs.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.