Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Subspace Detours: Building Transport Plans that are Optimal on Subspace Projections (1905.10099v4)

Published 24 May 2019 in cs.LG and stat.ML

Abstract: Computing optimal transport (OT) between measures in high dimensions is doomed by the curse of dimensionality. A popular approach to avoid this curse is to project input measures on lower-dimensional subspaces (1D lines in the case of sliced Wasserstein distances), solve the OT problem between these reduced measures, and settle for the Wasserstein distance between these reductions, rather than that between the original measures. This approach is however difficult to extend to the case in which one wants to compute an OT map (a Monge map) between the original measures. Since computations are carried out on lower-dimensional projections, classical map estimation techniques can only produce maps operating in these reduced dimensions. We propose in this work two methods to extrapolate, from an transport map that is optimal on a subspace, one that is nearly optimal in the entire space. We prove that the best optimal transport plan that takes such "subspace detours" is a generalization of the Knothe-Rosenblatt transport. We show that these plans can be explicitly formulated when comparing Gaussian measures (between which the Wasserstein distance is commonly referred to as the Bures or Fr\'echet distance). We provide an algorithm to select optimal subspaces given pairs of Gaussian measures, and study scenarios in which that mediating subspace can be selected using prior information. We consider applications to semantic mediation between elliptic word embeddings and domain adaptation with Gaussian mixture models.

Citations (28)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.