Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Specialized Decision Surface and Disentangled Feature for Weakly-Supervised Polyphonic Sound Event Detection (1905.10091v6)

Published 24 May 2019 in cs.SD, cs.LG, and eess.AS

Abstract: In this paper, a special decision surface for the weakly-supervised sound event detection (SED) and a disentangled feature (DF) for the multi-label problem in polyphonic SED are proposed. We approach SED as a multiple instance learning (MIL) problem and utilize a neural network framework with a pooling module to solve it. General MIL approaches include two kinds: the instance-level approaches and embedding-level approaches. We present a method of generating instance-level probabilities for the embedding level approaches which tend to perform better than the instance-level approaches in terms of bag-level classification but can not provide instance-level probabilities in current approaches. Moreover, we further propose a specialized decision surface (SDS) for the embedding-level attention pooling. We analyze and explained why an embedding-level attention module with SDS is better than other typical pooling modules from the perspective of the high-level feature space. As for the problem of the unbalanced dataset and the co-occurrence of multiple categories in the polyphonic event detection task, we propose a DF to reduce interference among categories, which optimizes the high-level feature space by disentangling it based on class-wise identifiable information and obtaining multiple different subspaces. Experiments on the dataset of DCASE 2018 Task 4 show that the proposed SDS and DF significantly improve the detection performance of the embedding-level MIL approach with an attention pooling module and outperform the first place system in the challenge by 6.6 percentage points.

Citations (42)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.