Papers
Topics
Authors
Recent
2000 character limit reached

Label-aware Document Representation via Hybrid Attention for Extreme Multi-Label Text Classification

Published 24 May 2019 in cs.LG and stat.ML | (1905.10070v2)

Abstract: Extreme multi-label text classification (XMTC) aims at tagging a document with most relevant labels from an extremely large-scale label set. It is a challenging problem especially for the tail labels because there are only few training documents to build classifier. This paper is motivated to better explore the semantic relationship between each document and extreme labels by taking advantage of both document content and label correlation. Our objective is to establish an explicit label-aware representation for each document with a hybrid attention deep neural network model(LAHA). LAHA consists of three parts. The first part adopts a multi-label self-attention mechanism to detect the contribution of each word to labels. The second part exploits the label structure and document content to determine the semantic connection between words and labels in a same latent space. An adaptive fusion strategy is designed in the third part to obtain the final label-aware document representation so that the essence of previous two parts can be sufficiently integrated. Extensive experiments have been conducted on six benchmark datasets by comparing with the state-of-the-art methods. The results show the superiority of our proposed LAHA method, especially on the tail labels.

Citations (35)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.