Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Neural Temporal-Difference and Q-Learning Provably Converge to Global Optima (1905.10027v2)

Published 24 May 2019 in cs.LG, cs.AI, math.OC, and stat.ML

Abstract: Temporal-difference learning (TD), coupled with neural networks, is among the most fundamental building blocks of deep reinforcement learning. However, due to the nonlinearity in value function approximation, such a coupling leads to nonconvexity and even divergence in optimization. As a result, the global convergence of neural TD remains unclear. In this paper, we prove for the first time that neural TD converges at a sublinear rate to the global optimum of the mean-squared projected BeLLMan error for policy evaluation. In particular, we show how such global convergence is enabled by the overparametrization of neural networks, which also plays a vital role in the empirical success of neural TD. Beyond policy evaluation, we establish the global convergence of neural (soft) Q-learning, which is further connected to that of policy gradient algorithms.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.