Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Light-Weight RetinaNet for Object Detection (1905.10011v1)

Published 24 May 2019 in cs.CV

Abstract: Object detection has gained great progress driven by the development of deep learning. Compared with a widely studied task -- classification, generally speaking, object detection even need one or two orders of magnitude more FLOPs (floating point operations) in processing the inference task. To enable a practical application, it is essential to explore effective runtime and accuracy trade-off scheme. Recently, a growing number of studies are intended for object detection on resource constraint devices, such as YOLOv1, YOLOv2, SSD, MobileNetv2-SSDLite, whose accuracy on COCO test-dev detection results are yield to mAP around 22-25% (mAP-20-tier). On the contrary, very few studies discuss the computation and accuracy trade-off scheme for mAP-30-tier detection networks. In this paper, we illustrate the insights of why RetinaNet gives effective computation and accuracy trade-off for object detection and how to build a light-weight RetinaNet. We propose to only reduce FLOPs in computational intensive layers and keep other layer the same. Compared with most common way -- input image scaling for FLOPs-accuracy trade-off, the proposed solution shows a constantly better FLOPs-mAP trade-off line. Quantitatively, the proposed method result in 0.1% mAP improvement at 1.15x FLOPs reduction and 0.3% mAP improvement at 1.8x FLOPs reduction.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)