Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Robust Mahalanobis Metric Learning via Geometric Approximation Algorithms (1905.09989v3)

Published 24 May 2019 in cs.LG and stat.ML

Abstract: Learning Mahalanobis metric spaces is an important problem that has found numerous applications. Several algorithms have been designed for this problem, including Information Theoretic Metric Learning (ITML) [Davis et al. 2007] and Large Margin Nearest Neighbor (LMNN) classification [Weinberger and Saul 2009]. We study the problem of learning a Mahalanobis metric space in the presence of adversarial label noise. To that end, we consider a formulation of Mahalanobis metric learning as an optimization problem, where the objective is to minimize the number of violated similarity/dissimilarity constraints. We show that for any fixed ambient dimension, there exists a fully polynomial-time approximation scheme (FPTAS) with nearly-linear running time. This result is obtained using tools from the theory of linear programming in low dimensions. As a consequence, we obtain a fully-parallelizable algorithm that recovers a nearly-optimal metric space, even when a small fraction of the labels is corrupted adversarially. We also discuss improvements of the algorithm in practice, and present experimental results on real-world, synthetic, and poisoned data sets.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.