Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

EnsembleNet: End-to-End Optimization of Multi-headed Models (1905.09979v2)

Published 24 May 2019 in cs.CV

Abstract: Ensembling is a universally useful approach to boost the performance of machine learning models. However, individual models in an ensemble were traditionally trained independently in separate stages without information access about the overall ensemble. Many co-distillation approaches were proposed in order to treat model ensembling as first-class citizens. In this paper, we reveal a deeper connection between ensembling and distillation, and come up with a simpler yet more effective co-distillation architecture. On large-scale datasets including ImageNet, YouTube-8M, and Kinetics, we demonstrate a general procedure that can convert a single deep neural network to a multi-headed model that has not only a smaller size but also better performance. The model can be optimized end-to-end with our proposed co-distillation loss in a single stage without human intervention.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.