Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Pruning for Score-Based Bayesian Network Structure Learning (1905.09943v2)

Published 23 May 2019 in stat.ML and cs.LG

Abstract: Many algorithms for score-based Bayesian network structure learning (BNSL), in particular exact ones, take as input a collection of potentially optimal parent sets for each variable in the data. Constructing such collections naively is computationally intensive since the number of parent sets grows exponentially with the number of variables. Thus, pruning techniques are not only desirable but essential. While good pruning rules exist for the Bayesian Information Criterion (BIC), current results for the Bayesian Dirichlet equivalent uniform (BDeu) score reduce the search space very modestly, hampering the use of the (often preferred) BDeu. We derive new non-trivial theoretical upper bounds for the BDeu score that considerably improve on the state-of-the-art. Since the new bounds are mathematically proven to be tighter than previous ones and at little extra computational cost, they are a promising addition to BNSL methods.

Citations (14)

Summary

We haven't generated a summary for this paper yet.