Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On Pruning for Score-Based Bayesian Network Structure Learning (1905.09943v2)

Published 23 May 2019 in stat.ML and cs.LG

Abstract: Many algorithms for score-based Bayesian network structure learning (BNSL), in particular exact ones, take as input a collection of potentially optimal parent sets for each variable in the data. Constructing such collections naively is computationally intensive since the number of parent sets grows exponentially with the number of variables. Thus, pruning techniques are not only desirable but essential. While good pruning rules exist for the Bayesian Information Criterion (BIC), current results for the Bayesian Dirichlet equivalent uniform (BDeu) score reduce the search space very modestly, hampering the use of the (often preferred) BDeu. We derive new non-trivial theoretical upper bounds for the BDeu score that considerably improve on the state-of-the-art. Since the new bounds are mathematically proven to be tighter than previous ones and at little extra computational cost, they are a promising addition to BNSL methods.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.