Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Thwarting finite difference adversarial attacks with output randomization (1905.09871v1)

Published 23 May 2019 in cs.LG, cs.CR, cs.CV, and stat.ML

Abstract: Adversarial examples pose a threat to deep neural network models in a variety of scenarios, from settings where the adversary has complete knowledge of the model and to the opposite "black box" setting. Black box attacks are particularly threatening as the adversary only needs access to the input and output of the model. Defending against black box adversarial example generation attacks is paramount as currently proposed defenses are not effective. Since these types of attacks rely on repeated queries to the model to estimate gradients over input dimensions, we investigate the use of randomization to thwart such adversaries from successfully creating adversarial examples. Randomization applied to the output of the deep neural network model has the potential to confuse potential attackers, however this introduces a tradeoff between accuracy and robustness. We show that for certain types of randomization, we can bound the probability of introducing errors by carefully setting distributional parameters. For the particular case of finite difference black box attacks, we quantify the error introduced by the defense in the finite difference estimate of the gradient. Lastly, we show empirically that the defense can thwart two adaptive black box adversarial attack algorithms.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.