Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Non-Negative PARATUCK2 Tensor Decomposition Combined to LSTM Network For Smart Contracts Profiling (1905.09869v1)

Published 23 May 2019 in cs.CE and cs.NA

Abstract: Smart contracts are programs stored and executed on a blockchain. The Ethereum platform, an open-source blockchain-based platform, has been designed to use these programs offering secured protocols and transaction costs reduction. The Ethereum Virtual Machine performs smart contracts runs, where the execution of each contract is limited to the amount of gas required to execute the operations described in the code. Each gas unit must be paid using Ether, the crypto-currency of the platform. Due to smart contracts interactions evolving over time, analyzing the behavior of smart contracts is very challenging. We address this challenge in our paper. We develop for this purpose an innovative approach based on the non-negative tensor decomposition PARATUCK2 combined with long short-term memory (LSTM) to assess if predictive analysis can forecast smart contracts interactions over time. To validate our methodology, we report results for two use cases. The main use case is related to analyzing smart contracts and allows shedding some light into the complex interactions among smart contracts. In order to show the generality of our method on other use cases, we also report its performance on video on demand recommendation.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube