Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 116 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Distributional Policy Optimization: An Alternative Approach for Continuous Control (1905.09855v2)

Published 23 May 2019 in cs.LG, cs.AI, and stat.ML

Abstract: We identify a fundamental problem in policy gradient-based methods in continuous control. As policy gradient methods require the agent's underlying probability distribution, they limit policy representation to parametric distribution classes. We show that optimizing over such sets results in local movement in the action space and thus convergence to sub-optimal solutions. We suggest a novel distributional framework, able to represent arbitrary distribution functions over the continuous action space. Using this framework, we construct a generative scheme, trained using an off-policy actor-critic paradigm, which we call the Generative Actor Critic (GAC). Compared to policy gradient methods, GAC does not require knowledge of the underlying probability distribution, thereby overcoming these limitations. Empirical evaluation shows that our approach is comparable and often surpasses current state-of-the-art baselines in continuous domains.

Citations (39)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.