Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 411 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Kaleido: An Efficient Out-of-core Graph Mining System on A Single Machine (1905.09572v1)

Published 23 May 2019 in cs.DC

Abstract: Graph mining is one of the most important categories of graph algorithms. However, exploring the subgraphs of an input graph produces a huge amount of intermediate data. The 'think like a vertex' programming paradigm, pioneered by Pregel, cannot readily formulate mining problems, which is designed to produce graph computation problems like PageRank. Existing mining systems like Arabesque and RStream need large amounts of computing and memory resources. In this paper, we present Kaleido, an efficient single machine, out-of-core graph mining system which treats disks as an extension of memory. Kaleido treats intermediate data in graph mining tasks as a tensor and adopts a succinct data structure for the intermediate data. Kaleido utilizes the eigenvalue of the adjacency matrix of a subgraph to efficiently solve the subgraph isomorphism problems with an acceptable constraint that the vertex number of a subgraph is less than 9. Kaleido implements half-memory-half-disk storage for storing large intermediate data, which treats the disk as an extension of the memory. Comparing with two state-of-the-art mining systems, Arabesque and RStream, Kaleido outperforms them by a GeoMean 12.3$\times$ and 40.0$\times$ respectively.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.