Papers
Topics
Authors
Recent
2000 character limit reached

Knowledge Graph Embedding Bi-Vector Models for Symmetric Relation (1905.09557v1)

Published 23 May 2019 in cs.AI and cs.CL

Abstract: Knowledge graph embedding (KGE) models have been proposed to improve the performance of knowledge graph reasoning. However, there is a general phenomenon in most of KGEs, as the training progresses, the symmetric relations tend to zero vector, if the symmetric triples ratio is high enough in the dataset. This phenomenon causes subsequent tasks, e.g. link prediction etc., of symmetric relations to fail. The root cause of the problem is that KGEs do not utilize the semantic information of symmetric relations. We propose KGE bi-vector models, which represent the symmetric relations as vector pair, significantly increasing the processing capability of the symmetry relations. We generate the benchmark datasets based on FB15k and WN18 by completing the symmetric relation triples to verify models. The experiment results of our models clearly affirm the effectiveness and superiority of our models against baseline.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.