Accelerating MR Imaging via Deep Chambolle-Pock Network (1905.09525v1)
Abstract: Compressed sensing (CS) has been introduced to accelerate data acquisition in MR Imaging. However, CS-MRI methods suffer from detail loss with large acceleration and complicated parameter selection. To address the limitations of existing CS-MRI methods, a model-driven MR reconstruction is proposed that trains a deep network, named CP-net, which is derived from the Chambolle-Pock algorithm to reconstruct the in vivo MR images of human brains from highly undersampled complex k-space data acquired on different types of MR scanners. The proposed deep network can learn the proximal operator and parameters among the Chambolle-Pock algorithm. All of the experiments show that the proposed CP-net achieves more accurate MR reconstruction results, outperforming state-of-the-art methods across various quantitative metrics.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.