Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Learning Discrete and Continuous Factors of Data via Alternating Disentanglement (1905.09432v1)

Published 23 May 2019 in cs.LG and stat.ML

Abstract: We address the problem of unsupervised disentanglement of discrete and continuous explanatory factors of data. We first show a simple procedure for minimizing the total correlation of the continuous latent variables without having to use a discriminator network or perform importance sampling, via cascading the information flow in the $\beta$-vae framework. Furthermore, we propose a method which avoids offloading the entire burden of jointly modeling the continuous and discrete factors to the variational encoder by employing a separate discrete inference procedure. This leads to an interesting alternating minimization problem which switches between finding the most likely discrete configuration given the continuous factors and updating the variational encoder based on the computed discrete factors. Experiments show that the proposed method clearly disentangles discrete factors and significantly outperforms current disentanglement methods based on the disentanglement score and inference network classification score. The source code is available at https://github.com/snu-mllab/DisentanglementICML19.

Citations (46)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.