Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Optimal Decision Making Under Strategic Behavior (1905.09239v5)

Published 22 May 2019 in cs.LG, cs.CY, and stat.ML

Abstract: We are witnessing an increasing use of data-driven predictive models to inform decisions. As decisions have implications for individuals and society, there is increasing pressure on decision makers to be transparent about their decision policies. At the same time, individuals may use knowledge, gained by transparency, to invest effort strategically in order to maximize their chances of receiving a beneficial decision. Our goal is to find decision policies that are optimal in terms of utility in such a strategic setting. To this end, we first characterize how strategic investment of effort by individuals leads to a change in the feature distribution. Using this characterization, we first show that, in general, we cannot expect to find optimal decision policies in polynomial time and there are cases in which deterministic policies are suboptimal. Then, we demonstrate that, if the cost individuals pay to change their features satisfies a natural monotonicity assumption, we can narrow down the search for the optimal policy to a particular family of decision policies with a set of desirable properties, which allow for a highly effective polynomial time heuristic search algorithm using dynamic programming. Finally, under no assumptions on the cost individuals pay to change their features, we develop an iterative search algorithm that is guaranteed to find locally optimal decision policies also in polynomial time. Experiments on synthetic and real credit card data illustrate our theoretical findings and show that the decision policies found by our algorithms achieve higher utility than those that do not account for strategic behavior.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.