Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Beyond Alternating Updates for Matrix Factorization with Inertial Bregman Proximal Gradient Algorithms (1905.09050v2)

Published 22 May 2019 in math.OC, cs.CV, cs.IR, and stat.ML

Abstract: Matrix Factorization is a popular non-convex optimization problem, for which alternating minimization schemes are mostly used. They usually suffer from the major drawback that the solution is biased towards one of the optimization variables. A remedy is non-alternating schemes. However, due to a lack of Lipschitz continuity of the gradient in matrix factorization problems, convergence cannot be guaranteed. A recently developed approach relies on the concept of Bregman distances, which generalizes the standard Euclidean distance. We exploit this theory by proposing a novel Bregman distance for matrix factorization problems, which, at the same time, allows for simple/closed form update steps. Therefore, for non-alternating schemes, such as the recently introduced Bregman Proximal Gradient (BPG) method and an inertial variant Convex--Concave Inertial BPG (CoCaIn BPG), convergence of the whole sequence to a stationary point is proved for Matrix Factorization. In several experiments, we observe a superior performance of our non-alternating schemes in terms of speed and objective value at the limit point.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.