Papers
Topics
Authors
Recent
2000 character limit reached

Compression with Flows via Local Bits-Back Coding (1905.08500v3)

Published 21 May 2019 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: Likelihood-based generative models are the backbones of lossless compression due to the guaranteed existence of codes with lengths close to negative log likelihood. However, there is no guaranteed existence of computationally efficient codes that achieve these lengths, and coding algorithms must be hand-tailored to specific types of generative models to ensure computational efficiency. Such coding algorithms are known for autoregressive models and variational autoencoders, but not for general types of flow models. To fill in this gap, we introduce local bits-back coding, a new compression technique for flow models. We present efficient algorithms that instantiate our technique for many popular types of flows, and we demonstrate that our algorithms closely achieve theoretical codelengths for state-of-the-art flow models on high-dimensional data.

Citations (51)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.