Papers
Topics
Authors
Recent
2000 character limit reached

The configuration model for Barabasi-Albert networks (1905.08093v1)

Published 17 May 2019 in physics.soc-ph and cs.SI

Abstract: We develop and test a rewiring method (originally proposed by Newman) which allows to build random networks having pre-assigned degree distribution and two-point correlations. For the case of scale-free degree distributions, we discretize the tail of the distribution according to the general prescription by Dorogovtsev and Mendes. The application of this method to Barabasi-Albert (BA) networks is possible thanks to recent analytical results on their correlations, and allows to compare the ensemble of random networks generated in the configuration model with that of "real" networks obtained from preferential attachment. For $\beta\ge 2$ ($\beta$ is the number of parent nodes in the preferential attachment scheme) the networks obtained with the configuration model are completely connected (giant component equal to 100%). In both generation schemes a clear disassortativity of the small degree nodes is demonstrated from the computation of the function $k_{nn}$. We also develop an efficient rewiring method which produces tunable variations of the assortativity coefficient $r$, and we use it to obtain maximally disassortative networks having the same degree distribution of BA networks with given $\beta$. Possible applications of this method concern assortative social networks.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.