Papers
Topics
Authors
Recent
Search
2000 character limit reached

Independent Vector Analysis with more Microphones than Sources

Published 20 May 2019 in cs.SD and eess.AS | (1905.07880v3)

Abstract: We extend frequency-domain blind source separation based on independent vector analysis to the case where there are more microphones than sources. The signal is modelled as non-Gaussian sources in a Gaussian background. The proposed algorithm is based on a parametrization of the demixing matrix decreasing the number of parameters to estimate. Furthermore, orthogonal constraints between the signal and background subspaces are imposed to regularize the separation. The problem can then be posed as a constrained likelihood maximization. We propose efficient alternating updates guaranteed to converge to a stationary point of the cost function. The performance of the algorithm is assessed on simulated signals. We find that the separation performance is on par with that of the conventional determined algorithm at a fraction of the computational cost.

Citations (57)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.