Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Optimal Guessing under Nonextensive Framework and associated Moment Bounds (1905.07729v1)

Published 19 May 2019 in cs.IT, cond-mat.stat-mech, and math.IT

Abstract: We consider the problem of guessing the realization of a random variable but under more general Tsallis' non-extensive entropic framework rather than the classical Maxwell-Boltzman-Gibbs-Shannon framework. We consider both the conditional guessing problem in the presence of some related side information, and the unconditional one where no such side-information is available. For both types of the problem, the non-extensive moment bounds of the required number of guesses are derived; here we use the $q$-normalized expectation in place of the usual (linear) expectation to define the non-extensive moments. These moment bounds are seen to be a function of the logarithmic norm entropy measure, a recently developed two-parameter generalization of the Renyi entropy, and hence provide their information theoretic interpretation. We have also considered the case of uncertain source distribution and derived the non-extensive moment bounds for the corresponding mismatched guessing function. These mismatched bounds are interestingly seen to be linked with an important robust statistical divergence family known as the relative $(\alpha,\beta)$-entropies; similar link is discussed between the optimum mismatched guessing with the extremes of these relative entropy measures.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube