Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

What Do Adversarially Robust Models Look At? (1905.07666v1)

Published 19 May 2019 in cs.CV

Abstract: In this paper, we address the open question: "What do adversarially robust models look at?" Recently, it has been reported in many works that there exists the trade-off between standard accuracy and adversarial robustness. According to prior works, this trade-off is rooted in the fact that adversarially robust and standard accurate models might depend on very different sets of features. However, it has not been well studied what kind of difference actually exists. In this paper, we analyze this difference through various experiments visually and quantitatively. Experimental results show that adversarially robust models look at things at a larger scale than standard models and pay less attention to fine textures. Furthermore, although it has been claimed that adversarially robust features are not compatible with standard accuracy, there is even a positive effect by using them as pre-trained models particularly in low resolution datasets.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.