Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Regions In a Linked Dataset For Change Detection (1905.07663v1)

Published 19 May 2019 in cs.DB

Abstract: Linked Datasets (LDs) are constantly evolving and the applications using a Linked Dataset (LD) may face several issues such as outdated data or broken interlinks due to evolution of the dataset. To overcome these issues, the detection of changes in LDs during their evolution has proven crucial. As LDs evolve frequently, the change detection during the evolution should also be done at frequent intervals. However, due to limitation of available computational resources such as capacity to fetch data from LD and time to detect changes, the frequent change detection may not be possible with existing change detection techniques. This research proposes to explore the notion of prioritization of regions (subsets) in LDs for change detection with the aim of achieving optimal accuracy and efficient use of available computational resources. This will facilitate the detection of changes in an evolving LD at frequent intervals and will allow the applications to update their data closest to real-time data.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)