Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evolving Rewards to Automate Reinforcement Learning (1905.07628v1)

Published 18 May 2019 in cs.LG, cs.AI, cs.NE, and stat.ML

Abstract: Many continuous control tasks have easily formulated objectives, yet using them directly as a reward in reinforcement learning (RL) leads to suboptimal policies. Therefore, many classical control tasks guide RL training using complex rewards, which require tedious hand-tuning. We automate the reward search with AutoRL, an evolutionary layer over standard RL that treats reward tuning as hyperparameter optimization and trains a population of RL agents to find a reward that maximizes the task objective. AutoRL, evaluated on four Mujoco continuous control tasks over two RL algorithms, shows improvements over baselines, with the the biggest uplift for more complex tasks. The video can be found at: \url{https://youtu.be/svdaOFfQyC8}.

Citations (47)

Summary

We haven't generated a summary for this paper yet.