Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 194 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

HALLS: An Energy-Efficient Highly Adaptable Last Level STT-RAM Cache for Multicore Systems (1905.07511v1)

Published 18 May 2019 in cs.AR, cs.DC, and cs.ET

Abstract: Spin-Transfer Torque RAM (STT-RAM) is widely considered a promising alternative to SRAM in the memory hierarchy due to STT-RAM's non-volatility, low leakage power, high density, and fast read speed. The STT-RAM's small feature size is particularly desirable for the last-level cache (LLC), which typically consumes a large area of silicon die. However, long write latency and high write energy still remain challenges of implementing STT-RAMs in the CPU cache. An increasingly popular method for addressing this challenge involves trading off the non-volatility for reduced write speed and write energy by relaxing the STT-RAM's data retention time. However, in order to maximize energy saving potential, the cache configurations, including STT-RAM's retention time, must be dynamically adapted to executing applications' variable memory needs. In this paper, we propose a highly adaptable last level STT-RAM cache (HALLS) that allows the LLC configurations and retention time to be adapted to applications' runtime execution requirements. We also propose low-overhead runtime tuning algorithms to dynamically determine the best (lowest energy) cache configurations and retention times for executing applications. Compared to prior work, HALLS reduced the average energy consumption by 60.57% in a quad-core system, while introducing marginal latency overhead.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube