Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Automated 3D recovery from very high resolution multi-view satellite images (1905.07475v2)

Published 17 May 2019 in cs.CV and eess.IV

Abstract: This paper presents an automated pipeline for processing multi-view satellite images to 3D digital surface models (DSM). The proposed pipeline performs automated geo-referencing and generates high-quality densely matched point clouds. In particular, a novel approach is developed that fuses multiple depth maps derived by stereo matching to generate high-quality 3D maps. By learning critical configurations of stereo pairs from sample LiDAR data, we rank the image pairs based on the proximity of the results to the sample data. Multiple depth maps derived from individual image pairs are fused with an adaptive 3D median filter that considers the image spectral similarities. We demonstrate that the proposed adaptive median filter generally delivers better results in general as compared to normal median filter, and achieved an accuracy of improvement of 0.36 meters RMSE in the best case. Results and analysis are introduced in detail.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.