Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Online Distributed Estimation of Principal Eigenspaces (1905.07389v1)

Published 17 May 2019 in stat.ML and cs.LG

Abstract: Principal components analysis (PCA) is a widely used dimension reduction technique with an extensive range of applications. In this paper, an online distributed algorithm is proposed for recovering the principal eigenspaces. We further establish its rate of convergence and show how it relates to the number of nodes employed in the distributed computation, the effective rank of the data matrix under consideration, and the gap in the spectrum of the underlying population covariance matrix. The proposed algorithm is illustrated on low-rank approximation and $\boldsymbol{k}$-means clustering tasks. The numerical results show a substantial computational speed-up vis-a-vis standard distributed PCA algorithms, without compromising learning accuracy.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.