Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Online Distributed Estimation of Principal Eigenspaces (1905.07389v1)

Published 17 May 2019 in stat.ML and cs.LG

Abstract: Principal components analysis (PCA) is a widely used dimension reduction technique with an extensive range of applications. In this paper, an online distributed algorithm is proposed for recovering the principal eigenspaces. We further establish its rate of convergence and show how it relates to the number of nodes employed in the distributed computation, the effective rank of the data matrix under consideration, and the gap in the spectrum of the underlying population covariance matrix. The proposed algorithm is illustrated on low-rank approximation and $\boldsymbol{k}$-means clustering tasks. The numerical results show a substantial computational speed-up vis-a-vis standard distributed PCA algorithms, without compromising learning accuracy.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.