Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

DeepSwarm: Optimising Convolutional Neural Networks using Swarm Intelligence (1905.07350v1)

Published 17 May 2019 in cs.LG, cs.NE, and stat.ML

Abstract: In this paper we propose DeepSwarm, a novel neural architecture search (NAS) method based on Swarm Intelligence principles. At its core DeepSwarm uses Ant Colony Optimization (ACO) to generate ant population which uses the pheromone information to collectively search for the best neural architecture. Furthermore, by using local and global pheromone update rules our method ensures the balance between exploitation and exploration. On top of this, to make our method more efficient we combine progressive neural architecture search with weight reusability. Furthermore, due to the nature of ACO our method can incorporate heuristic information which can further speed up the search process. After systematic and extensive evaluation, we discover that on three different datasets (MNIST, Fashion-MNIST, and CIFAR-10) when compared to existing systems our proposed method demonstrates competitive performance. Finally, we open source DeepSwarm as a NAS library and hope it can be used by more deep learning researchers and practitioners.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)